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Two-dimensional array of magnetic particles: The role of an interaction cutoff
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Based on theoretical results and simulations, in two-dimensional arrangements of a dense dipolar particle
system, there are two relevant local dipole arrangements:~1! a ferromagnetic state with dipoles organized in a
triangular lattice and~2! an antiferromagnetic state with dipoles organized in a square lattice. In order to
accelerate simulation algorithms, we search for the possibility of cutting off the interaction potential. Simula-
tions on a dipolar two-line system lead to the observation that the ferromagnetic state is much more sensitive
to the interaction cutoffR than the corresponding antiferromagnetic state. ForR*8 ~measured in particle
diameters! there is no substantial change in the energetical balance of the ferromagnetic and antiferromagnetic
state and the ferromagnetic state slightly dominates over the antiferromagnetic state, while the situation is
changed rapidly for lower interaction cutoff values, leading to the disappearance of the ferromagnetic ground
state. We studied the effect of bending ferromagnetic and antiferromagnetic two-line systems and observed that
the cutoff has a major impact on the energetical balance of the ferromagnetic and the antiferromagnetic state
for R&4. Based on our results we argue thatR'5 is a reasonable choice for dipole-dipole interaction cutoff
in two-dimensional dipolar hard sphere systems, if one is interested in local ordering.

DOI: 10.1103/PhysRevE.68.041102 PACS number~s!: 64.10.1h, 45.70.2n, 74.25.Ha, 75.40.Mg
fo
(

f
io
le

r
te
es
na
c

ble

of
is

e
e
le

a
o
in

n-
w

be
b

-

ing
e

tate

e-

ma-
le

as
I. INTRODUCTION

Long-range interaction represents a major challenge
computer simulations. The size of the tractable systemsN
particles! is limited through the fact that the order ofN2

calculations are to be carried out at each step, though
many purposes large systems need to be studied. Per
boundary conditions, which are often helpful, can be imp
mented only by using sophisticated summation algorithms~if
possible due to screening!.

In principle, the above problems occur in so called sho
range interaction models as well, such as in the most ex
sively studied Lennard-Jones system. However, for th
systems a cutoff is usually introduced making the origi
short-range model explicitly finite range. It is generally a
cepted that the error introduced by the cutoff is negligi
provided the cutoff distance is large enough@1#.

Frequently the long-range interaction potential falls
like r 21, wherer is the distance between the particles. Th
should be compared to the Lennard-Jones system wher
potential decreases liker 26, where it is assumed that th
attractive part of that potential is due to induced dipo
dipole interaction.

In this study, we focus on the question of cutting off
potential which is in between the two above cases. We c
sider a two-dimensional ensemble of magnetic particles
teracting with ar 23 potential, which however, has an orie
tation dependence as well. It is crucial from the point of vie
of efficient programing to know if a reasonable cutoff can
introduced in this system. We investigate this problem
comparing the stability of static configurations.
1063-651X/2003/68~4!/041102~8!/$20.00 68 0411
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II. THE LUTTINGER-TISZA METHOD

The Hamiltonian of a system of spherical dipoles is

H5
1

2 (
iÞ j

si
TJi j sj , ~1!

wherei andj are dipole indices,s denotes the dipole momen
tum vector,sT denotes the transpose ofs, and

Ji j 5
1

ir i j i3 S I23
r i j +r i j

ir i j i2 D , ~2!

whereI denotes the identity matrix andr i j denotes the rela-
tive position vector of two dipoles. The 1/2 factor in Eq.~1!
avoids double counting of dipole pairs.

We can study the crystalline state of a dipole system us
the Luttinger-Tisza method@2# based on the idea that in cas
of crystals it is a natural assumption that the ground s
exhibits some discrete translational symmetry. IfG( i ) de-
notes the points generated fromi with discrete translations
belonging to theG symmetry group, the mentioned symm
try corresponds tosi5si 8 for all i 8PG( i ). According to this,
the system can be broken into identical cells and the sum
tion in Eq. ~1! can be limited to summation over one sing
cell. Accordingly, the energy per dipole can be expressed

E5
1

2n (
i , j 51

n

si
TA i j sj , ~3!

wheren is the number of dipoles per cell andA i j are sym-
metric matrices defined by
©2003 The American Physical Society02-1
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A i j 5 (
j 8PG( j ), j 8Þ i

Ji j 8 . ~4!

The expression of the energy per dipole in Eq.~3! can be
simplified by considering theŝ5(si) i 51

n hypervector andÂ
5(A i j ) i , j 51

n hypermatrix. By constructionÂ is symmetric.
Using these,E can be written as

E5
1

2n
ŝTÂŝ. ~5!

Solving the eigenvalue problem of the (nd)-dimensional
symmetric matrixÂ, whered is the dimension of the dipoles
we find thelk eigenvalues andx̂k orthogonal eigenvecto
system with normalizationi x̂ki5An. Using these we have

E5
1

2 (
k51

nd

lkbk
2 , ~6!

wherebk denotes the components ofŝ in the x̂k orthogonal
eigenvector system.

If the dipoles have identical scalar strengthm, i.e., isi i
5m, thenbk must satisfy for alli 51, . . . ,n the condition

I (
k51

nd

bkxk
i I5m, ~7!

where xk
i are the components of thex̂k hypervector which

belong to dipole indexi. Adding the square of the abov
equations and taking into consideration that$x̂k%k51

nd form an
orthogonal system, we conclude thatbk must satisfy the con-
dition

(
k51

nd

bk
25m2. ~8!

In the framework of the Luttinger-Tisza method, the
two conditions are known as the strong@Eq. ~7!# and the
weak@Eq. ~8!# conditions. From the weak condition and E
~6!, it can be derived that the energy per dipole in the grou
state isEmin51/2 lminm

2, wherelmin denotes the smalles
eigenvalue ofÂ. If there is one single eigenvalue equal
lmin , the ground state dipole arrangement is given by
corresponding eigenvector. If there are more eigenva
equal tolmin , the ground state dipole arrangement is giv
by the linear combinations of the corresponding eigenvec
which satisfy the strong condition.

III. TWO-DIMENSIONAL ARRAY OF MAGNETIC
PARTICLES

The above method was applied to a system of tw
dimensional dipole moments with identical scalar stren
located at the sites of an infinite rhombic lattice with
arbitrary rhombicity angle by Brankov and Danchev@3#.
They considered that the ground state of this system h
translational symmetry corresponding to discrete translat
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along the lattice lines with multiples of 2a, wherea is the
lattice constant. They found that the ground state depend
the rhombicity angle.

We repeated their calculations with the consideration t
the dipoles are carried by identical hard spherical particle
diameter equal to the lattice constant, and according to
geometrical constraint introduced by this consideration
limited the rhombicity angle to 60°<a<90°. In accordance
with their results, we found that the system has a ferrom
netic ground state for 60°<a&79.38°, and an antiferromag
netic ground state for 79.38°&a<90°. We also found that
the ground state fora560° is a continuously degenera
ferromagnetic state, and fora590° is a continuously degen
erate microvortex state including a fourfold degenerate a
ferromagnetic state, where the microvortex state is define
two antiferromagnetic sublattices making an arbitrary an
with each other. We also identified the states with the sec
lowest energy per dipole. The results fora560° and a
590° are summarized in Table I.

We repeated the calculations taking into consideration
interaction of only two neighboring lines on the rhomb
lattice. This corresponds to the interaction of two lines
dipolar hard spheres shifted according to thea rhombicity
angle. The Luttinger-Tisza method can be applied in
straightforward way also in this case. We observed that
ground state depends on the rhombicity anglea similar to
the previous case. We found that the system has a ferrom
netic ground state for 60°<a&75.67°, and an antiferromag
netic ground state for 75.67°&a<90°. The ground state fo
a560° is a twofold degenerate ferromagnetic state, and
a590° is a twofold degenerate antiferromagnetic state.
also identified the states with the second lowest energy
dipole, and we summarized the results fora560° anda
590° in Table II.

It is not surprising that taking into consideration only tw
lines of the rhombic lattice reduces significantly the origin
symmetry of the system. This can be seen comparing
results in Tables I and II. It is important to note that th
two-line system has no continuously degenerate gro
state, and thus the ground state is always defined by

TABLE I. Dipole arrangements corresponding to the lowest t
energy values per dipole in a two-dimensional system of dip
moments with identical scalar strength located at the sites o
infinite rhombic lattice with rhombicity anglesa560° and a
590°. The energy is measured inm2/a3 units, wherem is the scalar
strength of the dipole moments anda is the lattice constant.

a560° E522.758 Continuously degenerate
ferromagnetic state

E522.047 Sixfold degenerate
antiferromagnetic state

a590° E522.549 Continuously degenerate
microvortex state including

a fourfold degenerate
antiferromagnetic state

E522.258 Continuously degenerate
ferromagnetic state
2-2
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Luttinger-Tisza basic arrangement with the lowest eig
value. In particular, there is a special ferromagnetic and
antiferromagnetic state, which—depending on thea rhom-
bicity angle—define the ground state.

It can be also seen comparing the results in Tables I an
that the interaction of two neighboring lines almost satura
the long-range dipole-dipole interaction, furthermore it
widely known that dipolar spheres due to dipole-dipole
teractions tend to aggregate into chainlike structures~see, for
example, Refs.@4,5# and references therein! in which the
energies of intrachain interactions are much greater t
those of interchain interactions@6#. These confirm that study
ing a two-line system gives valuable results related to pr
erties of dipole-dipole interaction in general.

IV. THE ROLE OF AN INTERACTION CUTOFF

Brankov and Danchev@3# observed that the ground sta
of a system of dipoles on an infinite rhombic lattice is se
sitive to the dipole-dipole interaction range. AnR interaction
cutoff distance can be introduced in a natural way with
slight modification of Eq.~4! as

A i j 5 (
j 8PG( j ), j 8Þ i

Ji j 8ur i j 8,R , ~9!

where r i j 8 denotes the distance of two dipoles and ther i j 8
,R constraint represents the fact that the summation m
only contain terms corresponding to pairs of spherical
poles closer to each other than theR cutoff distance. We
measure the interaction cutoff value ina units, wherea is the
lattice constant equal to the particle diameter.

It can be seen from Eq.~2! that the strength of the dipole
dipole interaction decays with 1/r i j 8

3 , and thus the above
expression for largeR can be arbitrarily close to the long
range limit in Eq.~4!. This means that the numerical eval
ation of Luttinger-Tisza states in general can be based on
~9! if R is big enough.

Our numerical results for the two-line system atR equal
to 106 ~lines! and 8~points! are shown on Fig. 1. The resul
corresponding toR5106 are close to the long-range intera
tion limit within the numerical errors of 64-bit floating poin

TABLE II. Dipole arrangements corresponding to the lowe
two energy values per dipole in a two-dimensional system of dip
moments with identical scalar strength located on two neighbo
lines of an infinite rhombic lattice with rhombicity anglesa560°
anda590°. The energy is measured inm2/a3 units, wherem is the
scalar strength of the dipole moments anda is the lattice constant.

a560° E522.582 Twofold degenerate
ferromagnetic state

E522.226 Twofold degenerate
antiferromagnetic state

a590° E522.477 Twofold degenerate
antiferromagnetic state

E522.331 Twofold degenerate
ferromagnetic state
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arithmetic. The upper panel of Fig. 1 shows the lowest
ergy per dipole of the ferromagnetic and the antiferrom
netic state as function of the rhombicity angle. The low
panel of Fig. 1 shows the angle of the dipoles with respec
the direction of the longest linear dimension of the syste

Without any calculation, one might expect that in th
ground state of the two-line system the dipoles are orien
parallel to the lines in both ferromagnetic and antiferroma
netic states. It is a surprising result of our calculations t
this is true only fora560° anda590°. For any othera the
dipoles form a small angle with the lines. However, the
angles are less than 2.5° so they cannot be neglected.

Below a certaina, as can be observed in Fig. 1, th
ground state of the system corresponds to the ferromagn
order, and above it to the antiferromagnetic order. The an
at which the transition from a ferromagnetic to an antifer
magnetic ground state takes place is shifted by only 3%
to the cutoff. That the antiferromagnetic state remains alm
unchanged is a consequence of the strong coupling of ne
boring dipoles of opposite orientation, which makes the
teraction cutoff irrelevant.

t
le
g

FIG. 1. Numerical results for the two-line system atR equal to
106 ~lines! and 8~points!. The upper panel shows the lowest ener
per dipole of the ferromagnetic and the antiferromagnetic state
function of the rhombicity angle~in degrees!. The energy is mea-
sured in unitsm2/a3. The lower panel shows the angle in degre
which the dipoles form with the direction of the longest linear d
mension of the system.
2-3
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FAZEKAS, KERTÉSZ, AND WOLF PHYSICAL REVIEW E68, 041102 ~2003!
As expected~see Fig. 1! the ferromagnetic state ata
560° and the antiferromagnetic state ata590° are stable
configurations of the two-line system of dipolar hard sphe
independent ofR, however asR decreases the crossov
point gets slightly shifted.

At low interaction cutoff distances (R&8), the discrete
nature of the system becomes more and more relevant
both the ferromagnetic and the antiferromagnetic energy
dipole begin to exhibit sudden jumps in function of th
rhombicity angle~see Fig. 2!. As the interaction cutoff de-
creases, the energy jumps become more and more rele
This behavior can introduce numerical instabilities in sim
lations using a badly chosen cutoff distance. It must
noted, however, that one should not overestimate this ef
as the energy jumps are relatively small. It is an interest
observation that for some interaction cutoff values~e.g., at
R'4) the energy per dipole shows significantly low
anomalies.

The ferromagnetic line is shifted upward asR decreases
~see Figs. 1 and 2!, and according to this the antiferroma

FIG. 2. Numerical results for the two-line system atR equal to
7, 6, 5, 4, and 3. The upper panel shows the lowest energy
dipole of the ferromagnetic and the antiferromagnetic state as f
tion of the rhombicity angle~in degrees!. In ferromagnetic states
the lines are shifted upward asR decreases. The lower panel show
the angle in degrees which the dipoles form with the direction of
longest linear dimension of the system.
04110
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netic state becomes more and more dominant. For largeR the
ferromagnetic state ata560° has lower energy per dipol
than the antiferromagnetic state ata590°. Our numerical
results show that atR'4 the situation is reversed, and
R'2 the ferromagnetic ground state disappears. Bran
and Danchev@3# found that in case of an infinite rhombi
lattice with rhombicity anglea560° the ferromagnetic
ground state disappears atR'3.

V. FINITE SIZE CORRECTIONS

We investigated the finite size corrections of the ene
per dipole of the two-line system in ferromagnetic and an
ferromagnetic states. In these states the infinite system ca
decomposed into identical finite segments. IfN denotes the
number of dipoles per line in a finite segment, the energy
dipole of the infinite system can be written as

E5
1

2N F1

2 (
i , j Ps(N), iÞ j

si
TJi j sj G

1
1

2N F1

2 (
i Ps(N), j Ps(N)c

si
TJi j sj G , ~10!

wheres(N) denotes the dipoles belonging to one segm
ands(N)c denotes the complementer ofs(N). The first part
in the above expression can be recognized as the en
E(N) per dipole of a finite segment containingN dipoles per
line.

We define the following quantity of energy dimension:

]E~N![N@E~N!2E#. ~11!

It can be seen that

]E~N!52
1

4 (
i Ps(N), j Ps(N)c

si
TJi j sj , ~12!

where in case of an interaction cutoffR one may add the
conditionr i j ,R. As Ji j is proportional to 1/r i j

3 @see Eq.~2!#,
one may expect that for large system size]E(N) is indepen-
dent ofN, and thus the limit

]E5 lim
N→`

]E~N!, ~13!

exists and is finite. Our numerical investigations confirm
this expectation. The convergence of]E(N) is of order 1/N
in the ferromagnetic case and is of order 1/N3 in the antifer-
romagnetic case. This proves that the above quantity is w
defined. We refer to the above quantity as the finite s
coefficient.

Numerical results showing the dependence of the ene
per dipoleE(N) of the two-line system on the system size
the long-range limit are presented in Fig. 3. The upper pa
shows results forN equal to 105 ~lines! and 100~points!, and
the lower panel shows results forN equal to 10, 8, 7, 6, and
5. Both the ferromagnetic and antiferromagnetic lines
moved upward asN decreases.E(N) at N5105 is close to

er
c-

e
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TWO-DIMENSIONAL ARRAY OF MAGNETIC . . . PHYSICAL REVIEW E 68, 041102 ~2003!
the energy per dipoleE of the infinite two-line system within
the numerical errors of 64-bit floating point arithmetic.

Based on the definition of the finite size coefficient f
largeN, the energy per dipole of a finite system can be
proximated as

E~N!'E1]E/N. ~14!

Our numerical investigations show that this approxim
tion is reasonable even forN'10. The finite size coefficien
of the ferromagnetic state is approximately two times lar
than the finite size coefficient of the antiferromagnetic sta
and thus the ferromagnetic line moves upward approxima
two times faster than the antiferromagnetic line~see Fig. 3!.
It can be observed that for largeN the ferromagnetic state a
a560° has lower energy per dipole than the antiferrom
netic state ata590°. Our numerical results show that atN
520 the situation is reversed, and atN55 the ferromagnetic
ground state disappears.

FIG. 3. Numerical results showing the dependence of the en
per dipole of the two-line system on the system size in the lo
range limit. The upper panel shows results forN ~number of par-
ticles per line! equal to 105 ~lines! and 100~points!. The lower
panel shows results forN equal to 10, 8, 7, 6, and 5. Both th
ferromagnetic and antiferromagnetic lines are moved upward aN
decreases.~Note the different scales on the vertical axes.!
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VI. DEPENDENCE OF THE FINITE SIZE COEFFICIENT
ON INTERACTION CUTOFF

We investigated the dependence of the finite size coe
cient on the interaction cutoff distanceR. Figure 4 shows the
numerical results for ferromagnetic state~upper panel! at R
equal to 1000 and 500~points!, for antiferromagnetic state
~lower panel! at R equal to 100 and 50~points!, and for both
ferromagnetic ~upper panel! and antiferromagnetic state
~lower panel! at R5106 ~lines!. The finite size coefficient is
measured in unitsm2/a3. We calculated its value by evalu
ating the expression in Eq.~12! at N5105. The results for
R5106 are close to the long-range limit within the errors
64-bit floating point arithmetic.

As R is lowered in the antiferromagnetic case, the fin
size coefficient remains almost unchanged even forR'50,
while in the ferromagnetic case it decreases significantly
ready atR'1000. This shows again that the ferromagne

gy
-

FIG. 4. Numerical results showing the dependence of the fi
size coefficient for both ferromagnetic and antiferromagnetic sta
at R5106 ~lines!, for ferromagnetic state atR equal to 1000 and
500 ~points!, and for antiferromagnetic state atR equal to 100 and
50 ~points!. The upper panel shows results for the ferromagne
state and the lower panel shows results for the antiferromagn
state. The finite size coefficient is measured in unitsm2/a3. In the
ferromagnetic case, the lines are lowered asR decreases.~Note the
different scales on the vertical axes.!
2-5
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state is much more sensitive to the interaction cutoff than
antiferromagnetic state.

At lower interaction cutoff distances~at R&50), the dis-
crete nature of the system manifests itself in sudden jump
the finite size coefficient~see Fig. 5!.

The upper panel of Fig. 5 shows the finite size coeffici
of the ferromagnetic state as function of the rhombicity an
at R equal to 4, 3.75, 3.5, 3.25, and 3. The lines are lowe
asR decreases. The lower panel shows the finite size co
cient of the antiferromagnetic state atR equal to 40, 16, 8,
4, and 3. The lines are shifted upward asR decreases.

The jumps in the finite size coefficient become bigger
the interaction cutoff decreases~see Fig. 5!. These jumps are
not relevant at largeN, but can introduce energy jumps
lower dipole numbers, and thus can introduce local num
cal instabilities in simulations, but this effect should not
overestimated as the introduced energy jumps are relati
small.

FIG. 5. Numerical results showing the dependence of the fi
size coefficient at lower interaction cutoff distances. The up
panel shows the finite size coefficient of the ferromagnetic stat
function of the rhombicity angle~in degrees! at R equal to 4, 3.75,
3.5, 3.25, and 3. The lines are lowered asR decreases. The lowe
panel shows the finite size coefficient of the antiferromagnetic s
at R equal to 40, 16, 8, 4, and 3. The lines are shifted upward aR
decreases.~Note the different scales on the vertical axes.!
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VII. BENDING TWO LINES OF MAGNETIC PARTICLES

The finite size behavior presented before gives a g
description of finite dipole systems at largeN, but it is not
too helpful at lowerN. For a better understanding of th
system, we studied numerically finite systems~at smallN)
investigating the effect of bending two lines of dipolar ha
spheres in ferromagnetic and antiferromagnetic states@see
Figs. 6~a! and 6~b!#. In unbent case these correspond to t
previously studied ferromagnetic state ata560° and antifer-
romagnetic state ata590°. We introduce theg bending
parameter and define the bent system as composed of
ticles placed on an arc of angle 2Ng with dipole vectors
tangential to the arc@see definition ofg on Figs. 6~a! and
6~b!#. This definition involves a so called ‘‘bending limit’’ as
the arc’s angle is limited to 2p, and thusg must satisfy the
g<p/N condition.

Our numerical results show that for bending either a f
romagnetic or antiferromagnetic two-line system, so
physical effort is needed. We observed that the two-line s
tem in ferromagnetic state can be bent easily than in
corresponding antiferromagnetic state. This is a conseque
of the strong coupling of neighboring dipoles oriented an

e
r

as

te

FIG. 6. Numerical results related to bending a two-line syst
at different interaction cutoff values. The upper panel shows a fi
system of two lines of dipolar hard spheres in ferromagnetic
antiferromagnetic states. The lower panel shows (g,N) state dia-
grams~see text for description! for R ranging from 2 to`. The
lines are moved upward and lower asR decreases.
2-6
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parallelly. We also observed that as the antiferromagn
state is bent it becomes less and less stable. Figure 6 s
numerical results related to bending a two-line system at
ferent interaction cutoff values. As function of the bendi
parameterg and system sizeN, we compared the energy pe
dipole of the ferromagnetic and antiferromagnetic states
identified the points (g,N) at which these two states ar
energetically equivalent. We repeated this procedure at
ferentR interaction cutoff values. The lower panel of Fig.
shows corresponding (g,N) state diagrams.

In the long-range limit for small system size and lo
bending parameter, the antiferromagnetic state has lowe
ergy per dipole. This is in accordance with our previous
sults, and remains valid up toR'5. It is a surprising result
that this behavior changes rapidly for interaction cutoff v
ues between 4 and 5. ForR&4, the antiferromagnetic stat
remains more stable at largeN values even for large bendin
parameters. This means that at this point the general cha
teristics of an arbitrary dipole system is substantia
changed. Based on Fig. 6 and on our previous results,
argue thatR'5 is a reasonable choice for dipole-dipole i
teraction cutoff for two-dimensional systems of dipolar ha
spheres, if one is interested in local ordering.

VIII. CONCLUSIONS

Based on the fact that dipolar spheres due to dipole-dip
interactions tend to aggregate into chainlike structures
which the ratio of interchain-to-intrachain interactions
small, and that moreover the interaction of parallel chains
dipolar hard spheres almost saturates the dipole-dipole in
action in two-dimensional dense systems, we argue that
study of a dipolar two-line system gives valuable results
general dipolar particle systems.

Theoretical results and simulations show two relevant
pole arrangements:~1! a ferromagnetic state with dipoles o
ganized in a triangular lattice and~2! an antiferromagnetic
state with dipoles organized in a square lattice. Numer
results on a dipolar two-line system show that the ferrom
netic state is much more sensitive to the interaction cu
than the corresponding antiferromagnetic state. This can
explained by the efficient coupling of dipoles oriented an
parallelly. ForR*8, there is no substantial change in t
energetical balance of the ferromagnetic and antiferrom
netic states and the ferromagnetic state slightly domin
over the antiferromagnetic state, while the situation
changed rapidly for lower interaction cutoff values, leadi
to the disappearance of the ferromagnetic ground state.
numerical results show that the ferromagnetic ground s
disappears atR'2. Brankov and Danchev@3# found that in
case of an infinite triangular lattice the ferromagnetic grou
state disappears atR'3.

For characterizing the finite size behavior of the two-li
system, we introduced a finite size coefficient and obser
that it is sensitive to the interaction cutoff for both ferroma
netic and antiferromagnetic states. We also observed th
low interaction cutoff values the discrete nature of the s
tem leads to small energetical anomalies. These anom
increase as the interaction cutoff is lowered and can in
04110
ic
ws
f-

d

if-

n-
-

-

ac-

e

le
in

f
r-

he
r

i-

al
-

ff
be
-

g-
es
s

ur
te

d

d
-
at
-

ies
-

duce instabilities in numerical simulations. We argue, ho
ever, that this effect becomes relevant only at first or sec
neighbor interaction and it can be neglected at higher in
action cutoff values.

Finally, we studied the effects of bending ferromagne
and antiferromagnetic two-line systems. We characteri
the bending of a two-line system with the parameterg, while
N is the number of dipoles per line. We created (g,N) state
diagrams separating energetically favorable ferromagn
and antiferromagnetic states. We observed that there is a
stantial change of these state diagrams forR&4, and—in
accordance with our previous results—we argue thatR'5 is
a reasonable choice for dipole-dipole interaction cutoff
two-dimensional dipolar hard sphere systems, if one is in
ested in local ordering.

It is a surprising result that the reasonable interaction c
off is independent of the strength of the dipole-dipole int
action and the particle size. This is a consequence of the
that there are two relevant dipole arrangements~a ferromag-
netic and an antiferromagnetic!, and their energetical balanc
can be reduced to geometrical factors. If there are any o
interactions in the system~e.g., friction!, this study must be
revisited and it may turn out that the reasonable interac
cutoff is dependent on the interaction strength and part
size. We envision, however, that in some cases~e.g., in case
of friction! the presence of another short-range interact
keeps or even lowers the value of the reasonable interac
cutoff found above.

In this paper, we focused on the local dipole ordering.
the ferromagnetic case, however, domain structures bec
important, which can reduce external magnetic stray fie
These global structures should depend on the long-range
of the interaction. For magnetic granular systems, the form
tion of such domains may be hindered, e.g., by frictio
though, as it requires the reorientation of particles.

We did not address the response to an external magn
field. The reason is that long-range correlations and he
the response functions will be more strongly affected by
dipolar interaction cutoff than the local structures and ene
densities considered in this paper. In principle, an Ew
summation method@7,8# would allow us to explore the re
sponse properties in the thermodynamic limit in terms
large but finite systems with periodic boundary condition
However, here again friction may be an important factor
be taken into account: An external magnetic field trying
orient the magnetic moments would exert a stress on
particle arrangement, if particle rotations would be hinde
by friction. Then the magnetic response of the system wo
crucially depend on the relative strength of the magnetic
isotropy of the particles, i.e., the coupling between parti
and magnetic moment orientations, and friction forces
tween the particles.
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