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Two-dimensional array of magnetic particles: The role of an interaction cutoff
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Based on theoretical results and simulations, in two-dimensional arrangements of a dense dipolar particle
system, there are two relevant local dipole arrangemébts ferromagnetic state with dipoles organized in a
triangular lattice and2) an antiferromagnetic state with dipoles organized in a square lattice. In order to
accelerate simulation algorithms, we search for the possibility of cutting off the interaction potential. Simula-
tions on a dipolar two-line system lead to the observation that the ferromagnetic state is much more sensitive
to the interaction cutofR than the corresponding antiferromagnetic state. Rer8 (measured in particle
diametergthere is no substantial change in the energetical balance of the ferromagnetic and antiferromagnetic
state and the ferromagnetic state slightly dominates over the antiferromagnetic state, while the situation is
changed rapidly for lower interaction cutoff values, leading to the disappearance of the ferromagnetic ground
state. We studied the effect of bending ferromagnetic and antiferromagnetic two-line systems and observed that
the cutoff has a major impact on the energetical balance of the ferromagnetic and the antiferromagnetic state
for R=<4. Based on our results we argue tRat5 is a reasonable choice for dipole-dipole interaction cutoff
in two-dimensional dipolar hard sphere systems, if one is interested in local ordering.
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I. INTRODUCTION Il. THE LUTTINGER-TISZA METHOD

. : . The Hamiltonian of a system of spherical dipoles is

Long-range interaction represents a major challenge for

computer simulations. The size of the tractable systelhs ( 1 .

particles is limited through the fact that the order H=3 ; SINIEY D

calculations are to be carried out at each step, though for !

many purposes large systems need to be studied. Periodjherei andj are dipole indicess denotes the dipole momen-

boundary conditions, which are often helpful, can be impletym vector,s” denotes the transpose sfand

mented only by using sophisticated summation algoritfims

possible due to screening 1 rierii
In orinci . ) 3= _g il
n principle, the above problems occur in so called short ij THE THE

range interaction models as well, such as in the most exten- " "

sively studied Lennard-Jones system. However, for thesgere| denotes the identity matrix ang, denotes the rela-
systems a cutoff is usually introduced making the originalk;,e position vector of two dipoles. The 1/2 factor in H@)
short-range model explicitly finite range. It is generally ac-ayoids double counting of dipole pairs.
cepted that the error introduced by the cutoff is negligible e can study the crystalline state of a dipole system using
provided the cutoff distance is large enoUdh. the Luttinger-Tisza methof®2] based on the idea that in case
Frequently the long-range interaction potential falls off of crystals it is a natural assumption that the ground state
like r ~*, wherer is the distance between the particles. Thisexhibits some discrete translational symmetryI'lfi) de-
should be compared to the Lennard-Jones system where thetes the points generated franwith discrete translations
potential decreases like ®, where it is assumed that the belonging to thd”™ symmetry group, the mentioned symme-
attractive part of that potential is due to induced dipole-try corresponds tg =g for all i’ e I'(i). According to this,
dipole interaction. the system can be broken into identical cells and the summa-
In this study, we focus on the question of cutting off ation in Eqg.(1) can be limited to summation over one single
potential which is in between the two above cases. We corcell. Accordingly, the energy per dipole can be expressed as
sider a two-dimensional ensemble of magnetic particles in-
teracting with ar ~2 potential, which however, has an orien-
tation dependence as well. It is crucial from the point of view
of efficient programing to know if a reasonable cutoff can be
introduced in this system. We investigate this problem bywheren is the number of dipoles per cell ad; are sym-
comparing the stability of static configurations. metric matrices defined by

: 2

1 n
—_ TA o
E= Zni;lSAuﬁ, (3)
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TABLE I. Dipole arrangements corresponding to the lowest two
Aij = 2 Jij,. (4 energy values per dipole in a two-dimensional system of dipole
i"el(), ' #i moments with identical scalar strength located at the sites of an
. . . infinite rhombic lattice with rhombicity anglese=60° and «
The expression of the energy per dipole in E2).can be | . o3 % .
) - o N . - =90°. The energy is measured;irt/a® units, whereu is the scalar
simplified by considering the=(s);_, hypervector antA  girength of the dipole moments aads the lattice constant.

=(Aij)ﬂj:1 hypermatrix. By construction is symmetric.

Using theseE can be written as a=60° E=—-2.758 Continuously degenerate
ferromagnetic state
E— iATAg_ 5) E=-2.047 $ixfo|d degeqerate
2n antiferromagnetic state
) ) ) ) a=90° E=—-2.549 Continuously degenerate
Solving the elgenvalue problem of thad)-dimensional microvortex state including
symmetric matrixA, whered is the dimension of the dipoles, a fourfold degenerate
we find the\, eigenvalues and, orthogonal eigenvector antiferromagnetic state
system with normalizatiofix,/|= v/n. Using these we have E=-2.258 Continuously degenerate

ferromagnetic state

1 nd
E:Ekzl b2, (6)
along the lattice lines with multiples ofa2 wherea is the
lattice constant. They found that the ground state depends on
the rhombicity angle.
We repeated their calculations with the consideration that
the dipoles are carried by identical hard spherical particles of

whereb, denotes the components sin the )?k orthogonal
eigenvector system.
If the dipoles have identical scalar strength i.e., |s|

= u, thenby, must satisfy for ali=1, ... n the condition . ) :
diameter equal to the lattice constant, and according to the
nd geometrical constraint introduced by this consideration we
2 biX | = s, (7) limited the rhombicity angle to 662 «<90°. In accordance
k=1 with their results, we found that the system has a ferromag-

i - . netic ground state for 662 «<79.38°, and an antiferromag-
where x, are the components of the hypervector which  petic ground state for 79.38°a<90°. We also found that
belong to dipole index. Adding the square of the above the ground state forr=60° is a continuously degenerate
equations and taking into consideration thg& ¢, form an ferromagnetic state, and far=90° is a continuously degen-
orthogonal system, we conclude thgtmust satisfy the con- erate microvortex state including a fourfold degenerate anti-
dition ferromagnetic state, where the microvortex state is defined as
two antiferromagnetic sublattices making an arbitrary angle
s 5 with each other. We also identified the states with the second
2 bie=n". ® lowest energy per dipole. The results far=60° and a

=90° are summarized in Table I.

In the framework of the Luttinger-Tisza method, these We repeated the calculations taking into consideration the
two conditions are known as the strofgg. (7)] and the interaction of only two neighboring lines on the rhombic
weak[Eq. (8)] conditions. From the weak condition and Eq. lattice. This corresponds to the interaction of two lines of
(6), it can be derived that the energy per dipole in the groundlipolar hard spheres shifted according to thehombicity
state iSEpin=1/2 A minu?, Wherex i, denotes the smallest angle. The Luttinger-Tisza method can be applied in a
eigenvalue ofA. If there is one single eigenvalue equal to straightforward way also in this case. We observed that the

Amin, the ground state dipole arrangement is given by thground state depends on the rhombicity anglsimilar to
corresponding eigenvector. If there are more eigenvalue§'€ Prévious case. We found that the system has a ferromag-
equal to\ iy, the ground state dipole arrangement is givenetic ground state for 662 «=<75.67°, and an antiferromag-

by the linear combinations of the corresponding eigenvector§€tic ground state for 75.6%«=90°. The ground state for
which satisfy the strong condition. a=60° is a twofold degenerate ferromagnetic state, and for

a=90° is a twofold degenerate antiferromagnetic state. We
also identified the states with the second lowest energy per
dipole, and we summarized the results for=60° and «
=90° in Table II.

The above method was applied to a system of two- Itis not surprising that taking into consideration only two
dimensional dipole moments with identical scalar strengtHines of the rhombic lattice reduces significantly the original
located at the sites of an infinite rhombic lattice with ansymmetry of the system. This can be seen comparing the
arbitrary rhombicity angle by Brankov and Danchfg]. results in Tables | and Il. It is important to note that the
They considered that the ground state of this system hastao-line system has no continuously degenerate ground
translational symmetry corresponding to discrete translationstate, and thus the ground state is always defined by the

IIl. TWO-DIMENSIONAL ARRAY OF MAGNETIC
PARTICLES
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TABLE II. Dipole arrangements corresponding to the lowest 22
two energy values per dipole in a two-dimensional system of dipole
moments with identical scalar strength located on two neighboring o 225
lines of an infinite rhombic lattice with rhombicity angles=60° ~ 23
anda=90°. The energy is measured,itt/a® units, whereu is the %
scalar strength of the dipole moments ani$ the lattice constant. g7 -2.35
T 24
a=60° E=-2582 Twofold degenerate g
ferromagnetic state gﬁ -2.45
E=-2.226 Twofold degenerate 5 25 ” .
antiferromagnetic state L% 255 anti-lerromagnetic
a=90° E=—2.477 Twofold degenerate - ferromagnetic
antiferromagnetic state -2.6
E=-2331 Twofold degenerate 60 65 70 . 75 80 8 90
ferromagnetic state Rhombicity angle (o)
2.5
Luttinger-Tisza basic arrangement with the lowest eigen- 2 2,
value. In particular, there is a special ferromagnetic and an ferromagnetic
antiferromagnetic state, which—depending on thehom- 1.5
bicity angle—define the ground state. 1

It can be also seen comparing the results in Tables | and Il
that the interaction of two neighboring lines almost saturates
the long-range dipole-dipole interaction, furthermore it is
widely known that dipolar spheres due to dipole-dipole in-
teractions tend to aggregate into chainlike struct(ses, for

o

Dipole angle ()
[
w

o
w

anti-ferromagnetic

example, Refs[4,5] and references therginn which the -1

energies of intrachain interactions are much greater than 15

those of interchain interactiofi6]. These confirm that study- 60 65 70 75 80 85 90
ing a two-line system gives valuable results related to prop- Rhombicity angle (c)

erties of dipole-dipole interaction in general.
FIG. 1. Numerical results for the two-line systemRaequal to
IV. THE ROLE OF AN INTERACTION CUTOFF 10° (lines) and 8(points. The upper panel shows the lowest energy
per dipole of the ferromagnetic and the antiferromagnetic state as
Brankov and Danche{8] observed that the ground state function of the rhombicity angléin degrees The energy is mea-

of a system of dipoles on an infinite rhombic lattice is sen-sured in unitsu?/a. The lower panel shows the angle in degrees
sitive to the dipole-dipole interaction range. Rinteraction  which the dipoles form with the direction of the longest linear di-
cutoff distance can be introduced in a natural way with amension of the system.

light modification of Eq(4
s tication al4) as arithmetic. The upper panel of Fig. 1 shows the lowest en-

ergy per dipole of the ferromagnetic and the antiferromag-
Ajj= > Jijrle, <ros (99  netic state as function of the rhombicity angle. The lower
i"el(), j'=#i : panel of Fig. 1 shows the angle of the dipoles with respect to
) i the direction of the longest linear dimension of the system.
wherer;;, denotes the distance of two dipoles and the Without any calculation, one might expect that in the
<R constraint represents the fact that the summation mugjround state of the two-line system the dipoles are oriented
only contain terms corresponding to pairs of spherical diparallel to the lines in both ferromagnetic and antiferromag-
poles closer to each other than tRecutoff distance. We netic states. It is a surprising result of our calculations that
measure the interaction cutoff valuedmnits, whereais the  this is true only fora=60° anda=90°. For any othet the
lattice constant equal to the particle diameter. dipoles form a small angle with the lines. However, these
It can be seen from E@2) that the strength of the dipole- angles are less than 2.5° so they cannot be neglected.
dipole interaction decays with |f( and thus the above Below a certaina, as can be observed in Fig. 1, the
expression for larg&k can be arbitrarily close to the long- ground state of the system corresponds to the ferromagnetic
range limit in Eq.(4). This means that the numerical evalu- order, and above it to the antiferromagnetic order. The angle
ation of Luttinger-Tisza states in general can be based on Eat which the transition from a ferromagnetic to an antiferro-
(9) if Ris big enough. magnetic ground state takes place is shifted by only 3% due
Our numerical results for the two-line systemRaequal  to the cutoff. That the antiferromagnetic state remains almost
to 1¢ (lines) and 8(pointsg are shown on Fig. 1. The results unchanged is a consequence of the strong coupling of neigh-
corresponding t&R=10° are close to the long-range interac- boring dipoles of opposite orientation, which makes the in-
tion limit within the numerical errors of 64-bit floating point teraction cutoff irrelevant.
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-2.05 netic state becomes more and more dominant. For Rtpe
2.1 ferromagnetic ferromagnetic state at=60° has lower energy per dipole
o215 than the antiferromagnetic state @t=90°. Our numerical
e 59 results show that aR~4 the situation is reversed, and at
IS) M ' R~2 the ferromagnetic ground state disappears. Brankov
@‘2-25 ALY and Danche\{3] found that in case of an infinite rhombic
5 2.3 \i‘\” lattice with rhombicity anglea=60° the ferromagnetic
&-2.35 ”‘\_!!,‘!1 ground state disappearsRt=3.
@ 24 A ‘
5 -2.45 s YW V. FINITE SIZE CORRECTIONS
25 anti- ]IE'%&E— We i . . . .
: ferromagnetic e investigated the finite size corrections of the energy
-2.55 per dipole of the two-line system in ferromagnetic and anti-
60 65 70 . 75 80 8 90 ferromagnetic states. In these states the infinite system can be
Rhombicity angle (o) decomposed into identical finite segmentsNItdenotes the
number of dipoles per line in a finite segment, the energy per
2.5 dipole of the infinite system can be written as
2
1.5 E= il s'Jis
C 2N |2 ey, izj = 17
2 ! 11
R 0 ieo(N), jeo(N)©
]
§'0-5 » , where o(N) denotes the dipoles belonging to one segment
q anti-ferromagetic ando(N)° denotes the complementer @fN). The first part
: - in the above expression can be recognized as the energy
-1.5 E(N) per dipole of a finite segment containibhgdipoles per
60 65 70 75 80 85 90 Iir(1e.) P P J hodip P
Rhombicity angle () We define the following quantity of energy dimension:
FIG. 2. Numerical results for the two-line systemRaequal to IEN)=N[EN)—E]. (11

7, 6,5, 4, and 3. The upper panel shows the lowest energy per

dipole of the ferromagnetic and the antiferromagnetic state as func- |t can be seen that

tion of the rhombicity angldin degrees In ferromagnetic states,

the lines are shifted upward &decreases. The lower panel shows 1

the angle in degrees which the dipoles form with the direction of the IE(N)=—— 2 SqTJi,-Sj , (12
longest linear dimension of the system. iea(N), jeo(N)°

) ) where in case of an interaction cutd® one may add the

As expected(see Fig. 1 the ferromagnetic state at  conditionr;;<R. As J;; is proportional to I} [see Eq(2)],
=60° and the antiferromagnetic state @t 90° are stable one may expect that for large system si#N) is indepen-
configurations of the two-line system of dipolar hard spheregjent ofN, and thus the limit
independent ofRkR, however asR decreases the crossover
point gets slightly shifted. JE= lim 9&(N), (13

At low interaction cutoff distancesR=8), the discrete N—o
nature of the system becomes more and more relevant and
both the ferromagnetic and the antiferromagnetic energy pegxists and is finite. Our numerical investigations confirmed
dipole begin to exhibit sudden jumps in function of the this expectation. The convergenced#(N) is of order 1N
rhombicity angle(see Fig. 2 As the interaction cutoff de- in the ferromagnetic case and is of ordeN4/n the antifer-
creases, the energy jumps become more and more relevanbmagnetic case. This proves that the above quantity is well
This behavior can introduce numerical instabilities in simu-defined. We refer to the above quantity as the finite size
lations using a badly chosen cutoff distance. It must becoefficient.
noted, however, that one should not overestimate this effect Numerical results showing the dependence of the energy
as the energy jumps are relatively small. It is an interestinger dipole£(N) of the two-line system on the system size in
observation that for some interaction cutoff valiesy., at  the long-range limit are presented in Fig. 3. The upper panel
R~4) the energy per dipole shows significantly lower shows results foN equal to 16 (lines) and 100(points, and
anomalies. the lower panel shows results fdrequal to 10, 8, 7, 6, and

The ferromagnetic line is shifted upward Bsdecreases 5. Both the ferromagnetic and antiferromagnetic lines are
(see Figs. 1 and)2and according to this the antiferromag- moved upward a® decreasesS(N) at N=10 is close to

041102-4



TWO-DIMENSIONAL ARRAY OF MAGNETIC.. .. PHYSICAL REVIEW E 68, 041102 (2003

2.2+ 441
_225 = 4.4
L 23 .§
g 2 4.39
5 -2.35 =
! g4.38
= 24 8437
o0 -2.45 @
2 55 £ 436
g -2 anti-ferromagnetic
2.55 HA3S o :
26 ferromagnetic 434 + :2:‘;_ +F ferromagnetic
60 65 70 75 80 8 90 60 65 70 75 80 8 90
Rhombicity angle (o) Rhombicity angle (o)
-1.5 - " 2.22
_1.6 erromagnenc 2 21
O 5
g g 22
5 -1.8 %
5 S 2.19
& 1.9 S
) N 2.18
§ 2 2.17
2.2 H2.16
23 anti-ferromagnetic anti-ferromagnetic
60 65 70 75 80 85 90 2'1560 65 70 75 80 85 90
Rhombicity angle (o) Rhombicity angle (o)

FIG. 3. Numerical results showing the dependence of the energy F|G. 4. Numerical results showing the dependence of the finite
per dipole of the two-line system on the system size in the longsijze coefficient for both ferromagnetic and antiferromagnetic states
range limit. The upper panel shows results fo(number of par-  at R=10° (lines), for ferromagnetic state & equal to 1000 and
ticles per ling equal to 18 (lines) and 100(points. The lower 500 (pointy, and for antiferromagnetic state Rtequal to 100 and
panel shows results fad equal to 10, 8, 7, 6, and 5. Both the 50 (pointy. The upper panel shows results for the ferromagnetic
ferromagnetic and antiferromagnetic lines are moved upwafd as state and the lower panel shows results for the antiferromagnetic
decreasegNote the different scales on the vertical axes. state. The finite size coefficient is measured in upitéa®. In the

ferromagnetic case, the lines are loweredRadecreasegNote the
the energy per dipolE of the infinite two-line system within ~ different scales on the vertical axes.
the numerical errors of 64-bit floating point arithmetic.

Based on the definition of the finite size coefficient for v|. DEPENDENCE OF THE FINITE SIZE COEFFICIENT

large N, the energy per dipole of a finite system can be ap- ON INTERACTION CUTOFF

proximated as _ . S .
We investigated the dependence of the finite size coeffi-

cient on the interaction cutoff distanée Figure 4 shows the
E(N)~E+JE/N. (14 numerical results for ferromagnetic stdtgper panglat R
equal to 1000 and 50(pointg, for antiferromagnetic state

Our numerical investigations show that this approxima-(lower pane) at R equal to 100 and 5(points, and for both
tion is reasonable even fdt~10. The finite size coefficient ferromagnetic (upper panel and antiferromagnetic states
of the ferromagnetic state is approximately two times largeflower panel at R=10" (lines). The finite size coefficient is
than the finite size coefficient of the antiferromagnetic statemeasured in unitg.?/a®. We calculated its value by evalu-
and thus the ferromagnetic line moves upward approximatelpting the expression in Eq12) at N=10°. The results for
two times faster than the antiferromagnetic liisee Fig. 3. R=10° are close to the long-range limit within the errors of
It can be observed that for lardéthe ferromagnetic state at 64-bit floating point arithmetic.
a=60° has lower energy per dipole than the antiferromag- As R is lowered in the antiferromagnetic case, the finite
netic state atv=90°. Our numerical results show thatMt size coefficient remains almost unchanged evenRfer50,
=20 the situation is reversed, and\it=5 the ferromagnetic  while in the ferromagnetic case it decreases significantly al-
ground state disappears. ready atR~1000. This shows again that the ferromagnetic
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35
asp . — | |
3.4
335
33
3.5
32
3.15

3.1
60 65 70 75 80 85 90

Rhombicity angle (o)

Finite size coefficient

ferromagnetic

23 140
598 anti-ferromagnetic 120
2.26 100
bepding
2.24 80 45<R<5 limit
60 interaction cutoff

2.22

2.2
2.18
2.1660

40
20

Finite size coefficient

Dipole per line (N)

long-range limit

0

65 70 75 80 85 90 0.0001 0.001 0.01 0.1 |

Rhombicity angle (o) Bending parameter (y)

FIG. 6. Numerical results related to bending a two-line system

FIG. 5. Numerical results showing the dependence of the finiteat different interaction cutoff values. The upper panel shows a finite
size coefficient at lower interaction cutoff distances. The uppeystem of two lines of dipolar hard spheres in ferromagnetic and
panel shows the finite size coefficient of the ferromagnetic state agntiferromagnetic states. The lower panel shows\| state dia-
function of the rhombicity angléin degreesat R equal to 4, 3.75, 9grams(see text for descriptionfor R ranging from 2 to~. The
3.5, 3.25, and 3. The lines are loweredRaslecreases. The lower lines are moved upward and lower Bslecreases.

panel shows the finite size coefficient of the antiferromagnetic state
atRequal to 40, 16, 8, 4, and 3. The lines are shifted upwai as VII. BENDING TWO LINES OF MAGNETIC PARTICLES

decreasegNote the different scales on the vertical axes. The finite size behavior presented before gives a good
description of finite dipole systems at larbe but it is not

state is much more sensitive to the interaction cutoff than th&0 helpful at lowerN. For a better understanding of the
antiferromagnetic state. system, we studied numerically finite systefas smallN)

At lower interaction cutoff distance@t R<50), the dis- investigating the effect of bending two lines of dipolar hard

crete nature of the system manifests itself in sudden jumps i pheres in ferromagnetic and antiferromagnetic sties
the finite size coefficientsee Fig. 5 igs. Ga) and Gb)]. In unbent case these correspond to the

. L - reviously studied ferromagnetic statenst 60° and antifer-
The upper panel of Fig. 5 shows the finite size Coeﬁ'C'enfomagnetic state at=90°. We introduce they bending

of the ferromagnetic state as function of the rhombicity angle arameter and define the bent system as composed of par-
atRequal to 4, 3.75, 3.5, 3.25, and 3. The I|r'1e.s are IOWere(.{ji)cles placed on an arc of angleNZ with dipole vectors
asR decreases. The lower panel shows the finite size coeff

) . . lt'angential to the argsee definition ofy on Figs. &a) and
cient of the antiferromagnetic state Rtequal to 40, 16, 8, ()] This definition involves a so called “bending limit” as

4, and 3. The lines are shifted upwardRislecreases. the arc’s angle is limited to 2, and thusy must satisfy the
The jumps in the finite size coefficient become bigger as,< ;;/N condition.
the interaction cutoff decreasesee Fig. 3 These jumps are ~ Our numerical results show that for bending either a fer-
not relevant at large\, but can introduce energy jumps at romagnetic or antiferromagnetic two-line system, some
lower dipole numbers, and thus can introduce local numeriphysical effort is needed. We observed that the two-line sys-
cal instabilities in simulations, but this effect should not betem in ferromagnetic state can be bent easily than in the
overestimated as the introduced energy jumps are relativelyorresponding antiferromagnetic state. This is a consequence
small. of the strong coupling of neighboring dipoles oriented anti-
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parallelly. We also observed that as the antiferromagnetiduce instabilities in numerical simulations. We argue, how-
state is bent it becomes less and less stable. Figure 6 showser, that this effect becomes relevant only at first or second
numerical results related to bending a two-line system at difneighbor interaction and it can be neglected at higher inter-
ferent interaction cutoff values. As function of the bendingaction cutoff values.
parametery and system sizbl, we compared the energy per  Finally, we studied the effects of bending ferromagnetic
dipole of the ferromagnetic and antiferromagnetic states anednd antiferromagnetic two-line systems. We characterized
identified the points ¢,N) at which these two states are the bending of a two-line system with the parametewhile
energetically equivalent. We repeated this procedure at difN is the number of dipoles per line. We createdN) state
ferentR interaction cutoff values. The lower panel of Fig. 6 diagrams separating energetically favorable ferromagnetic
shows correspondingy(N) state diagrams. and antiferromagnetic states. We observed that there is a sub-
In the long-range limit for small system size and low stantial change of these state diagrams Re£4, and—in
bending parameter, the antiferromagnetic state has lower eaecordance with our previous results—we argue Ryab is
ergy per dipole. This is in accordance with our previous re-a reasonable choice for dipole-dipole interaction cutoff in
sults, and remains valid up ®~5. It is a surprising result two-dimensional dipolar hard sphere systems, if one is inter-
that this behavior changes rapidly for interaction cutoff val-ested in local ordering.
ues between 4 and 5. FB=<4, the antiferromagnetic state It is a surprising result that the reasonable interaction cut-
remains more stable at lardfevalues even for large bending off is independent of the strength of the dipole-dipole inter-
parameters. This means that at this point the general charaaetion and the particle size. This is a consequence of the fact
teristics of an arbitrary dipole system is substantiallythat there are two relevant dipole arrangemeéatgerromag-
changed. Based on Fig. 6 and on our previous results, weetic and an antiferromagneti@and their energetical balance
argue thatR~5 is a reasonable choice for dipole-dipole in- can be reduced to geometrical factors. If there are any other
teraction cutoff for two-dimensional systems of dipolar hardinteractions in the systerte.qg., friction, this study must be
spheres, if one is interested in local ordering. revisited and it may turn out that the reasonable interaction
cutoff is dependent on the interaction strength and particle
size. We envision, however, that in some ca®eg., in case
VIIl. CONCLUSIONS of friction) the presence of another short-range interaction

Based on the fact that dipolar spheres due to dipole-dipolléeeps or even lowers the value of the reasonable interaction
interactions tend to aggregate into chainlike structures irfutoff found above. _ .
which the ratio of interchain-to-intrachain interactions is [N this paper, we focused on the local dipole ordering. In
small, and that moreover the interaction of parallel chains ofh€ ferromagnetic case, however, domain structures become
dipolar hard spheres almost saturates the dipole-dipole intefportant, which can reduce external magnetic stray fields.
action in two-dimensional dense systems, we argue that thEhese global structures should depend on the long-range part
study of a dipolar two-line system gives valuable results forof the interaction. For magnetic granular systems, the forma-
general dipolar particle systems. tion of such domains may be hindered, e.g., by friction,

Theoretical results and simulations show two relevant difhough, as it requires the reorientation of particles. _
pole arrangement$1) a ferromagnetic state with dipoles or- _ We did not address the response to an external magnetic
ganized in a triangular lattice an@) an antiferromagnetic field. The reason is that I_ong-range correlations and hence
state with dipoles organized in a square lattice. Numericaih® response functions will be more strongly affected by a
results on a dipolar two-line system show that the ferromagdipolar interaction cutoff than the local structures and energy
netic state is much more sensitive to the interaction cutofflensities considered in this paper. In principle, an Ewald
than the corresponding antiferromagnetic state. This can p@ummation method7,8] would allow us to explore the re-
explained by the efficient coupling of dipoles oriented anti-SPOnse properties in the thermodynamic limit in terms of
parallelly. ForR=8, there is no substantial change in thelarge but finite systems with periodic boundary conditions.
energetical balance of the ferromagnetic and antiferromag;owevery here again friction may be an important factor to
netic states and the ferromagnetic state slightly dominate€ taken into account: An external magnetic field trying to
over the antiferromagnetic state, while the situation isOfient the magnetic moments would exert a stress on the
changed rapidly for lower interaction cutoff values, leadingParticle arrangement, if particle rotations would be hindered
to the disappearance of the ferromagnetic ground state. O friction. Then the magnetic response of the system would
numerical results show that the ferromagnetic ground statéfucially depend on the relative strength of the magnetic an-
disappears aR~2. Brankov and Dancheig] found that in  1SOtropy of the particles, ie., th'e coupling l.)ereen particle
case of an infinite triangular lattice the ferromagnetic grounct"d magnetic moment orientations, and friction forces be-

state disappears &~ 3. tween the particles.
For characterizing the finite size behavior of the two-line
system, we introduced a finite size coefficient and observed ACKNOWLEDGMENTS
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